.JTCI

JAVA TABLE CACHE

MAKE THE MOST OF
YOUR MASTER DATA

BETTER

ORGANIZED
INFORMATION

WWW.boi.at



JAVA TABLE CACHE (JTC)

MAKE THE MOST OF
YOUR MASTER DATA ﬁ

Do your business applications overload your servers with master data queries?

Consider using BOI's JAVA TABLE CACHE (JTC] to:
® Safely create customized master data snapshots from your existing master data stores

® Replicate those snapshots within your data center or across your worldwide network using
your existing infrastructure

® Enjoy convenient, ultra-fast, in-memory access to your master data using plain Java in an
unlimited number of JTC Clients

® Bathe in calmness: your IT architecture now supports audit-proof master data access
and distribution

JTC at a Glance

JTC, a product of BOI Software GmbH (BOI), delivers your master data to your Java business ap-  JTC elivers your master
plications in a form that is ultra-fast to access, linearly-scalable, internally-consistent, versioned, data to your Java business
and ultimately-traceable. The JTC system involves three components: JTC Publisher, an object applications.
distribution system of your choice, and JTC Client. JTC Publisher collects master data from va-

rious sources, prepares it in tabular form, and uses the object distribution system to publish the

master data to the JTC Clients. JTC Client is a small pure-Java library linked into your Java busi-

ness applications. It copies the master data tables from the object distribution system into the JVM

process’ memory, and provides a concise API to access them as in-memory indexed tables.

4 N\
JTC Clients
Master Data Stores JTC Publisher Object Distribution System Copy JTC snapshots
RDB Creates customized, inter- Distributes master into the JVM process’
NoSQL nally-consistent master data data snapshots to all memory for convenient,
JDBC snapshots JTC Clients ultra-fast, audit-proof
snapshot access
.

JTC

Figure 1: JTC concept overview

JTC is available in two editions. JTC Server Edition is for customers who do not already have a  JTCis availablein two
scalable replication system for master data distribution. JTC Server Edition includes BOI's own hi-  editions.

erarchical object distribution system. JTC Enterprise Edition enables you to distribute your master

data using your existing object distribution system. This may be any enterprise-class, key/value,

distributed object cache supporting PUT and GET semantics.

BOI 1



Introduction: Master Data and Business Processes

An organization’s master data provides a single source for business data used throughout the
organization’s systems, applications, and processes. Because master data typically changes rela-
tively slowly, but is widely and heavily used, it is commonly replicated throughout the organization.
Master data may be as simple as a list of country code abbreviations. More complex master data
might include a collection of tables parameterizing how to calculate a life insurance policy within

the regulatory and business environments of every country in the world.

Master Data

Branch

Basic medical claims data

Medical insurance

Life insurance premium tables

Insurance

Interest and exchange rate tables

Credit and Banking

Shipping and postage rate tables

Logistics

Transport schedules

Logistics

Machine part replacement schedules

Manufacturing, Operations

Vehicle rental rate tables

Car rental

Retail product master data

Retailing

Human resources pay schedules

Organizational Management

Business rule parameter tables

Organizational Management

Corporate policy tables Organizational Management

Any other type of reference data

An entire discipline has emerged concerned with the management of master data in large organi-
zations. JTC is a highly focused product concentrated on the distribution of, and ultra-fast access
to, master data.

Components of a JTC System

A JTC system is composed of three components which work together to support consistent,
large-scale distribution of your master data across your organization:

® JTC Publisher
® Anobject distribution system

® JTC Client

BOI

S

An organization’s master
data provides a single
source for business data.

Table 1: Master data
examples

JTC: distribution of, and
ultra-fast access to,
master data.



Data Source Data Source
(Linux/Solaris/Unix/Windows) (Mainframe)
- -
= = |(=)(=)E]
=== & =
JTC
| SR |

Publisher

OBJECT DISTRIBUTION SYSTEM

THIRD PARTY DISTRIBUTED BOI'S OWN
CACHING SOLUTION REPLICATION SYSTEM

JTC JTC JTC
p 4 | | -4
Client Client Client
APPLICATION A APPLICATION B APPLICATION C APPLICATION D
Java Virtual Machine (JVM) JVM JVM UNLIMITED
(Linux/Solaris/Unix/Windows) (Linux/Solaris/Unix/Windows) (Mainframe) NUMBER OF

JTC CLIENTS

S

Master Data Source

Direction of Data Flow

Java Applications

Figure 2 A JTC deployment with multiple data sources and multiple clients within multiple business applications

JTC Publisher

JTC Publisheris a server-side component that periodically creates JTC Snapshots based upon your
master data, and publishes these snapshots to the object distribution system.

A JTC Snapshot is an internally-consistent, uniquely-identified, versioned, traceable subset of your
master data. Each JTC Snapshot - tagged with a unique identifier - contains a collection of tables
and corresponding indexes. JTC Publisher uses your query specifications to collect and trans-
form your master data into the snapshot's tables and indexes. Your queries (typically SQL queries)
may access one or more local or remote master data sources. You specify both the structure and
content of each table and index in the snapshot. You may create a snapshot periodically, program-
matically, or manually.

A JTC Table, just like the TABLE you know from a relational database, is a matrix-like structure with
columns and rows. Each column is assigned a name and a data type. Each row corresponds to a
record. Since a JTC Table is simply a data structure in Java, the column data type is also a Java data
type. The JTC Publisher configuration allows you to specify how to map column data types between
your data source and your JTC table.

JTC Publisher acts as a central repository for all configuration related to JTC. There is no need
to maintain significant configuration on each JTC Client instance: each JTC Client requires only
enough configuration to locate and attach to the object distribution system.

JTC won't force you to abandon your existing master data sources. You can continue to use whiche-
ver tools you already have for maintaining your master data. JTC can draw master data from mul-
tiple backing data sources: relational databases; NoSQL (i.e. non-relational] databases; document
databases, XML, Excel or CSV files; or any combination thereof.

BOI

JTC Publisher creates
JTC Snapshots based
upon your master data.



Object Distribution System

Ina JTC deployment, the object distribution system is the component that actively delivers scala-
bility - the other JTC components simply stay out of the way. Information flows through the object
distribution system from the JTC Publisher to the JTC Client, not vice-versa. Because of this one-
way information flow, there is no need for distributed transactions or locks, and there is no limit on
the number of JTC Clients that can receive and cache your master data snapshots.

Your object distribution system should match your scalability requirements in at least three dimen-
sions: geographic, heterogeneous application, and homogeneous application. Geographic scalabi-
lity refers to the system’s ability to distribute master data over long distances, possibly even around
the globe. Heterogeneous application scalability refers to the system’s ability to distribute master
data across many different types of applications. Homogeneous application scalability refers to the
system’s ability to distribute master data across many different instances of the same application.

You choose which object distribution system you use with JTC. If you do not already have a scala-
ble replication system, use JTC Server Edition. This edition includes BOI's own hierarchical master
data replication system, which BOI has optimized for a pure JTC environment.

However, to leverage your existing distributed object cache solution, use JTC Enterprise Edition.
JTC Publisherand JTC Client plug directly into Hazelcast, Infinispan and Terracotta. JTC Enterprise
Edition is also compatible with other distributed object cache products. The one-way flow of infor-
mation from JTC Publisher to JTC Client means JTC's only requirements for the object distribution
system are:

® |t must support GET and PUT operations in which keys are strings, and values are [possibly
large) sequences of bytes

® PUT operations are only necessary at the publisher node; GET operations are only necessary
at the client nodes

® GET operations must deliver results which are consistent with the sequence of PUT operations
® |t must have a Java API

Again, you are in control: you have the freedom to select an object distribution system that meets
your needs with respect to scalability, latency, and resource consumption.

JTC Client

JTC Client is a small pure-Java library that you link into your Java application to gain ultra-fast
in-memory access to the JTC tables you published with JTC Publisher. JTC Client does much more
than simply calling GET on the object distribution system. From the Java application’s point of view,
JTC Client is an in-memory database providing a degree of read consistency available only in the
strictest transaction isolation level offered by standard databases.

As a Java library, JTC Client helps you resolve some common business application programming
difficulties. These are captured by the following questions and answers.

Are you concerned your master data accesses aren’t transactionally
consistent?

When running a master data query against a relational database, the entire query result must be
internally consistent. One aspect of ensuring internal consistency when frequent master data up-
dates are present, is to ensure transactional consistency of the query. That is, you must exclude the
possibility of dirty reads, non-repeatable reads, and phantom reads, which may have been intro-
duced due to other transactions running concurrently with your query. To safely achieve transacti-
onal consistency, you typically adjust the transaction isolation level to serializable.

BOI

S

Information flows through
the object distribution
system from the JTC Pu-
blisher to the JTC Client,
not vice-versa.

You choose which object
distribution system you
use with JTC.

JTC provides ultra-fast
master data snapshot
access from Java.

JTC ensures trans-
actionally consistent
master data access.



Software architects often try to avoid the serializable transaction isolation level, as it can be quite
taxing for the database. The reason is that the database must be capable of supporting, concur-
rently with the query, updates to the tables involved, possibly keeping multiple copies (or holding
multiple locks) until the query has completed. Although choosing a less stringent transaction iso-
lation level may ease the load on the database, this choice may also increase the risk of receiving
transactionally-inconsistent query results.

Ina JTC system, your business application queries are run against a master data snapshot instead
of directly against the master data store. This architecture has two implications. First, for the bu-
siness application query results to be internally consistent, the snapshot must also be internally
consistent. And second, since snapshot generation is rare, the query frequency on the master data
store is drastically reduced.

This frequency reduction diminishes the relevance of transaction isolation level performance. Th-
erefore, when generating internally-consistent snapshots, you can enjoy the safety of the serializ-
able transaction isolation level without incurring the elevated load resulting from its frequent use.

There is no performance penalty when a snapshot is accessed over an extended period of time
from JTC Client: there are no database locks to hold or multi-version transaction records to main-
tain. Snapshot use in JTC Client is also thread safe: access the same or a different snapshot from
different threads without hazard and without performance degradation.

Are your programmers forced to code their own searches?

If you are already bringing your master data to your applications, you may have found searching it
to be frustrating and repetitive. The data is in memory, but you can't search it conveniently. The po-
werful query tools you used with the relational database are no longer available to the application.
There are no common tools for querying tabular data inside of a Java application without moving
to a full in-memory Java database. Although much faster than client-server databases, common
in-memory Java databases are slow compared to JTC. They must carry the burden associated with
mutable shared data [not to mention the JDBC interface).

In addition to providing fast, sequential access to your in-memory JTC Table rows, JTC Client pro-
vides convenient compile-time API's for querying by

® column or multi-column equality (i.e., compound keys])
® column or multi-column inequality [i.e., range and not-equals queries)

® filtering operators such as <", ">", “<”, "2", "#", “contains”, “contains-case-sensitive”,
“begins-with”, “begins-with-case-sensitive”, “ends-with”, “ends-with-case-sensitive”,
and “regular-expression”

Do your programmers hard-code their own indexes (often in the
form of hash tables)?

Performance, in addition to convenience, is often a requirement when searching through data in a
Java application. Programmers commonly resort to building primitive indexes using hash tables or
binary search trees. This practice leads to repetitive hard-coded indexes, something you and your
programmers may find repugnant.

BOI

JTC makes data queries
easy.

Your JTC client queries

are automatically index-
accelerated.



JTC Publisher can create and distribute indexes: you configure which JTC indexes it should create
for each table. JTC Client will make both the data tables and the corresponding index tables avai-
lable for processing in-memory query requests. The benefits for you are:

® You receive ultra-fast query results
® Your programmers don't have to create their own indexes

® You can add indexes later, as a matter of configuration; JTC will distribute them to all of
your business applications

® You don't have to worry that your index and table versions don't match
® You don't have to rebuild your indexes when a new snapshot arrives

Your JTC Client queries are index-accelerated.

JTC: Advanced Master Data Distribution

At this point we've discussed each of the three components in a JTC system, and highlighted some
of the features each delivers to help you distribute master data consistently throughout your orga-
nization. Now it is time to consider the system as a whole.

Time Tagged Snapshots

Imagine you need to generate a report or a quote based on yesterday's master data instead of the  JTC can access multiple
current master data. How are you going to accomplish that? snapshots concurrently.

Within a business application, JTC Client allows you to choose a snapshot to use for subsequent
queries. You can choose any snapshot from the sequence of snapshots available in the client’s
cache. If you do not explicitly select a snapshot, the default choice is the most recent snapshot. If
your master data records include validity date ranges, you can select the snapshot that was valid
at a particular date or time. You may also select a snapshot directly with a snapshot identifier.
These snapshot selection options of the JTC Client AP| enable you to access older versions of your
master data. You may, if you choose, still access multiple snapshots concurrently (for example, in
a multi-threading environment such as a Java application server).

You control how long snapshots remain available in the cache with a simple JTC Publisher confi-
guration parameter.

Data Spaces and Multitenancy

Do you need to run your business rules on master data records that are tailor-selected for a parti-  JTC offers multiple data
cular geographic region, organizational division, or process maturity level? spaces and multitenancy.

In JTC, you don't need to modify each business application query to insert filtering logic that selects
the desired region or division. Instead, JTC allows you to create independent data spaces within
the same snapshot. Each data space contains the same table and index structures, but with diffe-
rent data content.

JTC Data Spaces are often used to support multitenancy. To do so, JTC Publisher is configured to
create one data space per tenant. A JTC Client must only specify which data space it wants to use;
it does not need to tailor any queries, as all tables are pre-filtered during publishing.

BOI 6



S

Auditing Master Data Distribution

Are you operating in a regulatory or business environment that requires clarity and traceability ~ JTC is audit-proof.
with respect to which master data has been used where and when?

Every JTC snapshot has a unique ID accessible via the JTC Client API. Using its own logging me-
chanism, every business application can log the snapshot ID corresponding to each of its query
results. To complement this, you can configure JTC Publisher to archive the full content of each JTC
snapshot. These features enable you to audit the exact snapshot content used by any query from
any business application. Finally, by tracing every PUT operation, JTC Publisher makes its use of
the object distribution system transparent.

JTC Application Performance

JTC Publisher queries your master data sources to generate master data snapshots. The object  JTC client queries are up

distribution system delivers these snapshots to the JTC Clients. Your business applications use 0990 times fasterthan
. , . direct database access via

JTC Client’s query APl to retrieve master data from the snapshots. JDBC.

How fast is a master data query in JTC Client compared to the same query in a client-server data-

base system, or an in-memory Java database?

To address this question, BOI conducted experiments to compare single-table query rates in three
scenarios:

1. JTC Enterprise Edition with Hazelcast via JTC Client
2. Oracle 11g Release 2 via Oracle’s thin JDBC Driver
3. H2 in-memory via H2's JDBC Driver

The test environment was identical in each scenario and consisted of:

1. Avirtualization host: An IBM x3650 M4 server stocked with 12 Intel Xeon E5-2630
processors (2.30 GHz)

2. Avirtualized guest: SUSE Linux Enterprise Server 11 64-bit assigned four computing cores
and 2GB of RAM

3. Oracle Java version 1.6

The IBM server was otherwise idle during the tests.
In each case, all test components ran within a single virtual machine.

Each test consisted of the following steps:

1. Randomly select a primary key value

2. Query a single table for all columns from the row that matches the primary key selected
instep 1

3. Repeat from step 1 for a fixed number of iterations

All table fields contained variable-length character data up to a maximum of 255 characters. The
individual tests varied along three dimensions:

1. table size (in both the number of rows and the number of columns)
2. the number of columns in the primary key (1 or 2]
3. the query engine (Oracle, H2 and JTC]

To allow for prepared statement compilation in Oracle and H2, and for initial table selection in JTC,
the time for the first query in each test was discarded. Additionally, in each scenario, appropriate
indexes were created to match the selection column(s) in each test.

BOI 7



The tests do not mutate data. Oracle uses pre-filled tables, H2 uses tables loaded into memory,
and JTC uses snapshots. Non-volatile media characteristics, such as I0PS, disk latency, and disk
throughput should not influence the test results.

The results of the tests are summarized in Table 2 below. In these tests, JTC queries are an order
of magnitude faster than H2’s. JTC queries are up to 550 times faster than Oracle’s queries.

Table 2: Test results comparing query volume among Oracle, H2 and JTC test systems.

Table size Oracle 11g Release 2 via JDBC In-Memory H2 Database JTC EE + Hazelcast with stable
Thin client-side driver Engine via JDBC mode (without a near cache)
) ) Xtimes faster ) Xtimes faster
Queries/Sec Queries/Sec Queries/Sec
than Oracle than Oracle
100x10 1* 10.799 434.782 40 6.250.000 579
X
2% 10.504 392.156 37 3.676.470 350
| 000x25 1* 10.570 279.329 26 5.263.157 498
,000x
2% 10.482 245.700 23 3.115.264 297
1* 9.765 165.016 17 3.690.036 378
10,000x50
2% 9.718 159.744 16 2.267.573 233

* Columns in primary key

After studying these claims, you may be wondering, “Are these extraor-
dinary performance gains plausible?”

Yes, these test results are plausible. BOI designed JTC's architecture for ultra-high performance.
JTC brings the master data to your business application. JTC also provides a client-side query API
for direct data access. Consequently, JTC Client query latencies are unaffected by:

1. the additional software layers and abstractions introduced by the JDBC API
2. runtime query compilation or prepared statement lookup

3. network traversal by query request/response packets

4. inter-process communication

5. context switching

These test results show that using JTC for master data queries has the potential to yield signifi-

cant savings. The more queries you run, the more you economize on time and resources by using
JTC.

BOl is aware that synthetic test scenarios never faithfully reflect how a product responds to a
specific customer’s IT requirements and environment. However, we are happy to work with you to
explore the benefits of using JTC in your business.

BOI 8



Conclusion

JTC’s three components assist you in maximizing the value of your organization’'s master
data while maintaining harmony with your existing master data management tools. JTC
Publisher supports you in creating versioned snapshots of your master data from virtually
any single data source or combination of data sources. You choose an object distribution
system to distribute your snapshots, whether it be your existing third-party enterprise
object cache or BOI's own JTC Server Edition. JTC Client provides your Java business
applications audit-proof, ultra-fast, in-memory, thread-safe access to your replicated
snapshots. Together, the JTC components provide master data access to your business
applications that is scalable, convenient, safe and low-latency.

Ina JTC deployment, you retain full control over all other aspects of master data
management including the processes, policies and tools you use to collect and curate
master data.

We invite you to make the most of your master data with Java Table Cache.

Specifications
JTC Publisher Object Distribution System
® QOperating systems: AlX, Unix, Linux, JTC Server Edition

Windows, z/0S, BS2000, VSE

® Data source compatibility: DB2, Oracle,
MySQL, PostgreSQL,...

® \Web-based Frontend

® JTC-proprietary

® QOperating systems: AlX, Solaris, Unix, Linux,
Windows, z/0S, BS2000, VSE

JTC Enterprise Edition

JTC Client ® Hazelcast
® Pure Java ® [nfinispan
® Requires Java version 1.6 or newer ® Terracotta
® No third-party Java dependencies ® Any object distribution system supporting

GET and PUT operations

All names and designations may be trademarks of their respective owners.

ORGANIZED

BOI BETTER BOI - Your Specialist for Ultra-fast Access to Your Master Data
INFORMATION

To learn more about JTC, please contact Frank Sinner (sales@boi.at]
or read the JTC product description at www.boi.at/en/jtc.

© BOI Software Entwicklung und Vertrieb GmbH, Spazgasse 4, 4040 Linz, Austria. All rights reserved.
Email: sales@boi.at, Web: www.boi.at, FN 81632y Landesgericht Linz, UID: ATU24421409

BOI 9



BETTER
ORGANIZED
INFORMATION



